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Abstract

A variable-band relaxation algorithm for solving large linear sys-
tems is developed as an alternative to Gauss-Jacobi relaxation. This
algorithm seeks to improve the reliability of Gauss-Jacobi relaxation
by extracting a variable-sized band from the matrix and solving that
band directly. This leads to a relaxation algorithm with provably bet-
ter convergence properties. Furthermore, this algorithm can be used
effectively on a massively parallel computer, because band matrices can
be solved in log(n) time on processors. Test results are presented
which compare the convergence properties of variable-band relaxation
to Gauss-Jacobi relaxation.
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1 Introduction

Designers of high performance integrated circuits make extensive use of cir-
cuit simulation programs like SPICE and ASTAP [NAG, WEE] in order
to tune their designs before fabrication. These circuit simulation programs
often require hours or days to complete a single simulation because they use
computationally expensive, but very reliable, numerical techniques. Since
many simulations are performed to design a given integrated circuit, slow
simulator turn-around time can significantly increase overall design time.
For this reason, using parallel processors to reduce the execution times of cir-
cuit simulation programs has been the focus of much current research[COX,
JAC].

Programs like SPICE and ASTAP use implicit multistep integration al-
gorithms to convert the differential equation system to a sequence of alge-
braic problems, one for each integration timestep. The algebraic problems
are solved using an iterative Newton method, each step of which involves
linearizing the circuit about some guessed solution, and solving the gener-
ated sparse linear system. Good parallel speed increases have been achieved
for the linearized system construction, but not for the sparse linear system
solution, particularly if there are many (more than 128) processors.

For machines with many processors, a technique that is effective for

MOS circuits is to use Gauss-Jacobi relaxation(GJ). Since the GJ algorithm
solves a system of equations by repeatedly solving each equation indepen-
dently for its associated unknown and then passing around the computed
values, GJ easily exploits as many processors as there are equations to be
solved. Although guaranteed to converge under certain conditions, GJ can
be inefficient if the timestep required to achieve convergence is very small.
Also, GJ can be unreliable because in some cases convergence may be in-
dicated when the result is far from the correct solution. An approach to
improving the reliability of GJ while maintaining a very parallel algorithm
is to extract a variable-sized diagonal band of the matrix and to solve that
band directly. This leads to a relaxation method with provably better con-
vergence properties. Band relaxation is still very parallelizable because band
matrices can be solved in order log(n) steps, given order n processors where
n is the number of equations in the system.

In Section 2, we develop the variable-band relaxation algorithm as a gen-
eralization of GJ. A method for sorting a matrix to improve the performance
of the banded-relaxation is presented in Section 3, and we discuss how to
incorporate the variable-band algorithm into a circuit simulation program.
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In Section 4, GJ and the band relaxation algorithm are used in a circuit sim-
ulator and the results from the transient analysis of several different circuits
are compared. Finally, we present our conclusions and some suggestions for
future research.

2 Variable-Band Relaxation

As mentioned above, the iterative Newton method is used to solve the non-
linear algebraic problem associated with each timestep of the transient anal-
ysis of a circuit, and each iteration of the Newton method involves computing
the solution to a sparse linear system. Specifically, for each Newton iteration
an z must be found such that Ax = b, where A E R' mX? is the Jacobian of
the nonlinear system, z E R is usually the vector of node voltage updates,
and b E R' is usually the vector of sums of currents entering each node.
In most circuit simulators the matrix problem is solved with some form of
sparse Gaussian elimination, which is difficult to parallelize[WIN].

More easily paralelized methods for solving the sparse matrix problem
are the iterative relaxation algorithms, the simpliest of which is the well-
known GJ relaxation. In GJ, the solution to a system of equations is com-
puted by solving each equation independently for its associated unknown,
and then exchanging the computed values, repeating the process until a con-
sistent solution throughout is achieved. The element update equation for
GJ can be written compactly as

b- (1)

3=1,1*'I

where k is the iteration index and ai3 is the ij"' entry of the matrix A.
As the equations represented by the rows in A are solved independently,

GJ can easily exploit n processors effectively. In addition, GJ is guaranteed
to converge when applied to solving the matrices generated by the transient
analysis of MOS circuits, if the timestep is small enough and there is a ca-
pacitor to ground at each node. The difficulty with GJ is that it is inefficient
if the timestep required to achieve convergence is very small, and GJ is un-
reliable because false convergence is common due to the limited spread of
information with each iteration[DUESAL,WEB,WHI].

To see how to construct more reliable relaxation methods with nearly as
much parallelism, it is helpful to cast relaxation into a more general frame.
Any two matrices M, N E R",,Xn are said to be a splitting of the matrix A if
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A = M - N. The iteration equation for a relaxation algorithm based on a
given splitting is then

Mzk+l = N k +b, (2)

and the asymptotic rate of convergence is the spectral radius of (M-'N)[VAR].
The goal is to select a splitting in which M is easy to factor and the con-
vergence of (2) is fast. Furthermore, since the objective is to produce an
efficient parallel algorithm, M should be easy to factor in a parallel fashion.

For the case of GJ, M is a diagonal matrix whose elements are the diag-
onals of A and is already in factored form. This leads to a very efficient par-
allel algorithm, but one which has poor convergence properties. One would
expect that movement of off-diagonal elements of A from N to M would
accelerate the convergence, because more of the system is being solved di-
rectly. This conjecture can be proven for the case of an A which is diagonally
dominant with positive diagonals and negative off-diagonals[VAR). If M is
selected to be a band matrix with a band-size much less than n, then by
using parallel cyclic reduction or nested dissection[DUF), M can be factored
in order log(n) steps on a parallel processor with order n processors(DON].
The relaxation algorithm generated by using a banded M will be referred
to as "band relaxation".

3 Equation Ordering and Band-Size Selection

If a band relaxation scheme is used, the ordering of the equations in A will
determine which off-diagonal elements are in the band, so it is possible to
change the convergence properties of the relaxation by reordering A. We
desire a good heuristic algorithm that will order A so as to reliably improve
the convergence properties of the relaxation, while at the same time allowing
the use of an M with as small a band-size as possible. Because of the
physical significance of the matrix A, one would expect that placing the
matrix entries corresponding to tightly-coupled circuit nodes into M would
improve the convergence of the band relaxation.

The matrix M is derived by first constructing a graph based on A which
has edges between pairs of nodes only if the pair of nodes is "tightly coupled."
The so-constructed graph of the matrix A is reordered to minimize the band-
width of M using the Reverse-Cuthill-McKee (RCM) algorithm[DUF,GEO].
This produces an ordering for A which will insure that the tightly coupled
equations lie together in an easily extracted band, i.e. in M. Note that the
band-size for M is automatically produced in the ordering process.
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A suggested heuristic[WHI] for finding tightly coupled pairs of nodes i, j
is to examine the spectral radius, p, of the GJ relaxation iteration matrix
applied to the to a 2 x 2 problem generated by deleting all but the ith and
jth rows and columns of A. In particular,

P = '.,iajJ .(3)

Nodes i and j are considered to be tightly-coupled if p is close to or greater
than unity.

However, consideration of only the spectral radius is not a good method
for improving the rate of convergence of GJ. For example, consider a lower-
triangular A with large sub-diagonal entries. The spectral radius of (M - 1 N)
is zero, but order n GJ iterations will be needed to achieve convergence. The
transient analysis of MOS circuits can produce a highly non-symmetric A,
and the coupling test implied by (3) may miss nodes which are tightly-
coupled in only one direction. Requiring that nodes i and j be grouped
together if

max2 (aj,, a,,) > (4)
laiiajii -

will ensure that strong one-way couplings are included into M.
The last step in developing the variable-band relaxation algorithm is

selecting a value for a. For a given circuit, selecting a fixed value for a is
a somewhat arbitrary process. While it might seem like a desirable goal to
be able to select an a which will produce a desired rate of convergence, it
is not clear in large systems how the choice of a will affect the convergence
rate. However, one way to "tune" the value of a to a particular circuit is to
adaptively adjust the value of a and monitor the effect on the band-size of
M. Since we are generally solving large, very sparse systems, if an ordering
existed such that M = A (e.g. a tridiagonal A), the band-size of M would
still be small compared to n. This suggests that maximum efficiency can be
obtained if we require that the band-size of M be at least [M), where m is the
total number of entries in A and (m] is the smallest integer greater than or
equal to M. To accomplish this, on the initial ordering of A, an a should be
selected which produces a band-size of M equal to IM]. Thereafter, and for
all subsequent reorderings, a can be temporarily decreased from its initial
value in order to include the maximum number of elements into M without

increasing the initial band-size.
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The following are the adaptive sorting and the band relaxation algo-
rithms (expressed in pseudo-code):

Algorithm I (AS) Given A,M E R" ", A having m elements, and M
being the band to be extracted from A, this algorithm orders A so as to
put as many tightly-coupled elements as possible onto a band with size of at
least j-M]. The function MRCM(A,a) sorts A with the modified Reverse-
Cuthill-McKee algorithm mentioned above, using a coupling criterion of a.

MRCM(A,a)
While band-size(M) < [MI

Shrink(a)
MRCM(A, a)

77=a
:= band-size(M)

While band-size(M) =
Shrink(rI)
MRCM(A, 77)

Algorithm 2 (BR) Given z,b E Rn and A,M E Wxn, M being the band
of tightly coupled elements contained in A, this algorithm solves Ax = b
iteratively for x. The routines band-LUdecomp and band-solve perform the
obvious functions, but are optimized for banded systems.

band-LUdecomp(M)
X° := 0
For k = 1,2,...

For i = 1,2, ...,N
sum := 0
For j = 1, 2,..., N

If j < i - p orj > i + p
sum := sum + ajz

6, := bi - sum
band-solve Mzk+ l = b

If zk + 1 converged with zk, break
If k > max-iter, signal failure

Since the circuits being simulated are nonlinear, the values of the ele-
ments A will change during the course of the simulation, possibly worsening
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a
the convergence characteristics of BR. While it may be possible to improve
the convergence of A by taking smaller time steps, it has been empirically
observed that it is best to reorder whenever BR fails to converge. Note that
in this dynamic reordering process, the band-size of M is likely to change.
Combining AS with BR gives our final result, the variable-band relaxation
algorithm:

Algorithm 3 (VBR) Given a circuit simulation program using an iter-
ative Newton method to solve the nonlinear algebraic problem associated
with each timestep of the transient analysis of a circuit, where each itera-
tion of the Newton method involves computing the solution to a sparse linear
system, Ax = b, A E RII" being the Jacobian of the nonlinear system, this
algorithm provides a method of incorporating BR into the simulation pro-
gram.

Sort A once according to AS at the beginning of the simulation.
Use BR to solve the linear system Az b generated at each Newton
iteration.
If the BR fails, rorder A according to AS and signal Newton non-
convergence.

Note that VBR can also be used in a nonlinear relaxation algorithm for
the Newton method solution. Nonlinear relaxation uses the same iterative
solution technique as the standard Newton method, but instead of solving
the linear system exactly at each time step, one relaxation iteration is per-
formed. Since VBR has better convergence properties than GJ in the linear
case, one would expect that it would also accelerate nonlinear relaxation.

4 Test Results

The algorithms above were coded in C and incorporated into a circuit sim-
ulation program for a serial computer. The following circuits were selected
as test examples:

dac: DAC circuit, n = 149, [ ] = 5.
lin: Linear RC line, n = 601, [] = 3.
opmp: Opamp circuit, n - 52, [ ] -7.
pla: PLA circuit, n = 66, (m] = 5.
rccl: High-speed CMOS static RAM control circuit, row access simu-
lation, n 149, tI] = 5.
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rcef. Identical to reel, but with parasitic resistances at every MOS-
FET drain and source, n = 703, [,!1 = 5.
shmem: Shared memory read circuit, n = 759, [EL = 5.

Note that red2 is an especially difficult circuit for a relaxation-based simu-
lator, due to the large number of parasitic elements. The transient analysis
conducted on each circuit example was the same regardless of the linear
solution method. Relaxation failure was indicated if the relaxation method
failed to converge within 32 iterations.

The following tables of results demonstrate the effectiveness of the VBR
algorithm. The number of Newton iterations required for direct, GJ, and
VBR solution methods, as well as the number of relaxation iterations re-
quired for GJ and VBR are shown in Table 1. Table 2 shows the number
of relaxation failures for GJ and VBR, [-I, and the maximum band-size of
M used during VBR. Note that there is very little difference in the number
of Newton iterations between VBR and direct methods, but that there is
a significant difference in the number of Newton and relaxation iterations
between GJ and VBR. Also, VBR exhibited very few relaxation failures
compared to GJ. As a relaxation method, VBR combines the parallelism of
GJ with the efficiency and reliability of direct methods.

Newton Iterations Relaxation Iterations
Circuit Direct GJ VBR GJ VBR
dac 2013 1999 1978 10871 7856
lin 148 8364' 148 1280051 230
opamp 347 765 397 11077 1620
pla 737 2423 729 31558 3448
rccl 3223 3266 3233 21143 13247
rcc2 4837 36455' 5068 1575981 29260
shmem 624 812 655 11205 2317

Table 1: Number of Newton Iterations for Direct, GJ, and VBR Solution
Methods; Number of Relaxation Iterations for GJ and VBR Methods.

Finally, the VBR algorithm was used in conjunction with a nonlinear
relaxation scheme, in which only one relaxation iteration was made for each

'Simulation terminated before completion due to excessive sumber of relaxation failures

(2000).
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Relaxation Failures
Circuit GJ VBR ,[] Max Band-Size
dac 6 1 5 13
in 20001 0 3 3
opamp 143 1 7 13
pla 341 0 5 9
reel 14 0 5 5
rce 2000' 4 5 11
ahmern 89 0 5 13

Table 2: Number of Relaxation Failures for GJ and VBR, Value of [ ], and
Maximum Band-Size Used During VBR.

Newton iteration. Table 3 shows the total number of Newton iterations
required for GJ and VBR. Note that VBR shows a dramatic improvement
in most of the circuits, a factor of almost 100 for pla. In fact, the nonlinear
VBR method uses no more Newton iterations than the direct method, but
in a parallel implementation each iteration would be much cheaper.

Circuit Direct GJ VBR
dac 2013 3522 2813
tin 148 179890' 148
opamp 347 6958 818
pla 737 119791 1319
reel 3223 9223 4264
rce2 4837 2 20726
shmem 624 19497 1082

Table 3: Number of Newton Iterations for Direct Solution Method and
Number of Nonlinear Relaxation Iterations for GJ and VBR Methods.

One may ask if it is possible to find a static ordering a priori which can
be used throughout the transient simulation. From our experimental results,

' Simulation terminated before completion due to excessive number of relaxation failures
(2000).

2Simulation terminated before completion due to Newton non-convergence.
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the answer is no. One logical candidate for a good static ordering would be
the final ordering used in a transient simulation. We tested this hypothesis
with rcc2, since it was the only circuit tested which required more than one
reordering. The result was that the VBR had to reorder one more time than
in the first case; it had to undo the initial ordering it was given, even though
this was the ordering it used later on in the simulation. This is not to say
that a static ordering does not exist, only that it does not seem easy to find
using the methods described in this paper.

An obvious extension to variable-band relaxation is to use a banded
pre-conditioner with conjugate-gradient methods. Some preliminary exper-
iments were conducted along these lines, but the results were not encourag-
ing, and are not included here.

5 Conclusion

In this paper, a variable-band relaxation algorithm for solving large linear
systems was developed as an alternative to Ganss-Jacobi relaxation. This
algorithm improved the reliability of GJ, while preserving the easily ex-
ploitable parallelism, by extracting a variable-sized band from the matrix
and solving that band directly. Test results were presented which compared
the convergence of variable-band relaxation to Gauss-Jacobi relaxation.

There are some extensions to the work presented in this paper that may
be worth exploring. For instance, the heuristic used for grouping nodes to-
gether on the band could be made more sophisticated; something similar to
the conductance partitioning idea in [WHI] might work well. An implemen-
tation of the VBR algorithm is currently being designed for the Connection
Machine, but implementations for other architectures should be pursued as
well.
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